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Abstract

We present the first single-view 3D reconstruction net-
work aimed at recovering geometric details from an input
image which encompass both topological shape structures
and surface features. Our key idea is to train the network
to learn a detail disentangled reconstruction consisting of
two functions, one implicit field representing the coarse 3D
shape and the other capturing the details. Given an in-
put image, our network, coined D2IM-Net, encodes it into
global and local features which are respectively fed into two
decoders. The base decoder uses the global features to re-
construct a coarse implicit field, while the detail decoder re-
constructs, from the local features, two displacement maps,
defined over the front and back sides of the captured ob-
ject. The final 3D reconstruction is a fusion between the
base shape and the displacement maps, with three losses
enforcing the recovery of coarse shape, overall structure,
and surface details via a novel Laplacian term.

1. Introduction

Reconstructing 3D shapes from single-view RGB im-
ages is the prototypical ill-posed problem in computer vi-
sion. Recently, rapid advances in deep learning have pro-
pelled the development of data-driven single-view 3D re-
construction methods. In particular, the emergence of neu-
ral implicit models [5, 26, 21] for 3D shape representation
learning has led to much improved reconstruction quality
compared to methods designed for voxel grids, meshes, and
point clouds. However, while technically the implicit fields
could be sampled to an arbitrarily high spatial resolution,
state-of-the-art reconstruction methods still are unable to
adequately recover fine-level geometric details.

Implicit reconstruction networks such as IM-Net [5] and
Occupancy Network [21] learn to predict an implicit func-
tion, given a feature encoding of the input image, by min-
imizing a reconstruction loss. These networks generalize
well to new images, but only in terms of the coarse shapes;
they are not designed to recover geometric details which are
often of small scale and do not incur a sufficient penalty on
the loss terms. In a more recent work, DISN, Xu et al. [41]

Figure 1. Our network learns to reconstruct a detail disentangled
3D representation from single-view images. The disentangled de-
tails enable detail transfer and 3D reconstruction (shown in two
views) with the transferred details from image to another.

account for both global and local image features to predict
a combined signed distance field (SDF) so as to minimize
a single reconstruction loss like prior works. Their network
can better resolve structural details, such as the slats in the
back of a chair, that are well captured by local image fea-
tures. However, the rest of the details, in particular surface
details, which are just as important for visual perception
(e.g., of depth and material), are still not well recovered.

In this paper, we wish to develop an implicit single-view
3D reconstruction network which can recover both topolog-
ical structures and surface details from an input image. Our
key idea is that to best reconstruct the details, we ought to
train the network to learn a detail disentangled reconstruc-
tion consisting of two functions, one representing the coarse
3D shape and one capturing the details. However, the main
ensuing challenge is that geometric details are so varied that
there is no general and reliable way to define what the de-
tails are or what a coarse shape should be. The network
must learn the disentangled representations without direct
supervision using ground-truth training data.

Figure 2 illustrates the pipeline of our detail disentangled
implicit reconstruction network, coined D2IM-Net. Given a
single RGB input image, the network encodes it into global
and local features which are respectively fed into two de-
coders. The base decoder uses the global features to re-
construct a coarse (i.e., base) implicit field, while the detail
decoder reconstructs, from the local features, a pair of 2D

1

ar
X

iv
:2

01
2.

06
65

0v
2 

 [
cs

.C
V

] 
 1

7 
D

ec
 2

02
0



Figure 2. The pipeline of our single-view 3D reconstruction network D2IM-Net consists of three stages. An encoder extracts global and
local features from the input image. This is followed by two decoder branches which respectively predict a base or coarse shape from
global features and two displacement maps (back and front) from local features. The final 3D reconstruction is a fusion between the base
shape and the displacement maps, with three losses enforcing recovery of coarse shape, overall structure, and surface details (Laplacian).

Figure 3. Illustration of a ground-truth (GT) shape+SDF (a) and
a disentanglement into a base shape+SDF (b) and a displacement
field (c). Bottom row plots SDF, displacement field, and Laplacian
values along the front surface (purple lines) of the GT shape. We
see close resemblance between the Laplacian of the displacement
field values and that of the GT SDF: blue vs. red curves in (e).
Note that at training, only the GT SDF is known (indicated by
orange borders in the figure); all other fields are to be learned.

displacement maps, defined over the front and back sides of
the captured object that are visible to the camera.

In the absence of any ground-truth displacement maps
for training, or coarse shapes for that matter, we must rely
on the original 3D shapes (e.g., from ShapeNet) or their as-
sociated SDFs to define the network losses. We first observe
that the Laplacian of the SDF of a shape near the shape
surface is sensitive to local geometry variations1, i.e., the

1The Laplacian of a signed distance function at a point x is proportional
to the mean curvature of the isosurface passing through x [8].

Figure 4. A visualization of 3D shapes reconstructed by the two
decoders of D2IM-Net demonstrates detail disentanglement: our
network learns to recover surface details via the front displacement
map and other details from the back map. The network was trained
on ShapeNet across 13 shape categories.

surface details. Furthermore, this Laplacian function resem-
bles the Laplacian of the front displacement map if the front
side of the coarse shape is mostly flat; see Figure 3. Based
on these observations, we define a corresponding Laplacian
loss to optimize the front displacement map.

In addition, we define a base loss and an SDF loss, both
with respect to the ground-truth SDF, where the SDF loss
is computed against a fusion between the predicted coarse
SDF and the predicted displacement maps, both the front
and the back. As the back displacement map is not fac-
tored into the Laplacian loss, it does not capture surface
details. However, with local image features as input, the
SDF loss does enforce the back map to help reconstruct the
overall shape structure, including topological details. Fig-
ure 4 visualizes the disentangled functions our network re-
constructs on two examples, where the predicted displace-
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ment maps evidently represent shape details, encompassing
both topological structures and surface features, while the
base decoder reconstructs the coarse shape.

We train our network on ShapeNet Core [3] across all 13
shape categories and show single-view reconstruction re-
sults for a variety of 3D objects, as well as reconstruction
results from “images in the wild”. We conduct various ab-
lation studies and present both qualitative and quantitative
comparisons between D2IM-Net and representative single-
view 3D reconstruction methods including IM-Net [5] and
DISN [41]. While the focus of our work is on reconstructing
shape details, evaluations are conducted on images contain-
ing objects with varying degrees of geometric details and
using different error metrics applicable to overall shapes
and edge revelation. Finally, we develop and demonstrate
a novel application of D2IM-Net, where the ability to learn
detail functions from images enables detail transfer from an
image onto a reconstructed 3D shape; see Figure 1.

2. Related work

Most learning-based methods for 3D reconstruction aim
to generalize to novel data [33, 40, 38, 27, 5, 21, 41, 9,
36, 6, 39, 10], while some recent networks are designed to
“overfit” to specific inputs [1, 44, 31, 23, 17]. In the lat-
ter case, a network is specifically trained to optimize the
reconstruction for a given input, typically multi-view im-
ages [44, 31, 23, 17] or a point cloud [1]. As expected,
such a specialization tends to produce much higher recon-
struction quality compared to methods from the first cate-
gory. However, with a new input, the network needs to be
re-trained. Our work belongs to the first category and in this
section, we mainly discuss related works in this category for
single-view 3D reconstruction, or SVR, for short.

Neural implicit models for SVR. The use of deep neu-
ral networks for SVR has gained significant improve-
ments with various 3D shape representations, including
voxels [6, 33, 38, 27, 39], meshes [36, 9], and struc-
tural primitives [25, 45]. Recently, implicit representa-
tions [5, 21, 26, 41, 40, 22, 16] have emerged as a desirable
alternative due to the advantages they offer at representing
continuous surfaces with higher visual quality and flexible
topology.

Supervised by the ground-truth (GT) occupancy or SDF,
earlier implicit reconstruction methods such as IM-NET [5],
OccupancyNetwork [21], and DeepLevelSets [22] predict
the scalar value at each 3D point to approximate the GT. La-
tent features encoded from the input images are fed into an
MLP network together with 3D point coordinates to predict
their occupancy or signed distances. Littwin and Wolf [16]
take the encoded feature vectors as the network weights of
the MLP to attain a more accurate reconstruction. Instead
of predicting the implicit fields as a whole, PQ-NET [40]

separately predicts the SDFs for each structural part of the
captured object and then combines them together.

Unsupervised SVR. Along the lines of SVR without 3D
supervision, differentiable renderers [12, 35] have been de-
veloped to back-propagate the loss computed from the in-
put images. Liu et al. [19] propose a ray-based field prob-
ing technique to render the implicit surfaces to 2D silhou-
ettes, with the geometric details erased from the silhouettes.
Niemeyer et al. [24] account for both geometry and texture
during rendering and make use of rich 2D supervision in-
cluding RGB, depth, and normal images.

SVR with local image features. What is common about
all the SVR methods mentioned above is that they are all
trained to reconstruct from global image features. As a re-
sult, these methods can successfully reconstruct the coarse
3D shapes, but with most shape details missing. A recent
work by Tatarchenko et al. [34] reveals that such recon-
structions could be easily outperformed by simple retrieval
baselines, which may suggest that the main role played by
the global images features is recognition rather than recon-
struction. This naturally leads to the incorporation of local
image features for learning shapes [11, 28].

Most closely related to our work is DISN [41] which ac-
counts for both global and local image features for SVR.
Specifically, it predicts the camera parameters to query the
local image feature for each point. Global and local features
are processed separately with the point coordinates to obtain
two predictions, which are combined and optimized against
a single SDF reconstruction loss. In addition, this loss is
weighted to place more emphasis on errors associated with
small SDF values. Qualitatively, the resulting reconstruc-
tion significantly improves the recovery of shape structures,
in particular, topological details, but still unable to recon-
struct surface details. In a more recent work, LadyBird, Xu
et al. [42] employ farthest point sampling and feature fusion
based on reflective symmetries to deal with self-occlusion.
However, geometric details are not taken into account.

Compared to DISN [41], our network is specifically de-
signed to learn a detail disentangled implicit shape repre-
sentation, as contrasted in Figure 4. The key technical dif-
ference is that our network defines a dedicated loss for each
reconstructed function (the based SDF and two displace-
ment maps) and then sums up the losses, leading to disen-
tanglement, while in DISN, there is only one loss. Spe-
cific to the recovery of surface details, we introduce a novel
Laplacian loss to learn from GT normal maps.

Laplacian-space processing. The Laplacian operator for
image or shape processing captures local variations. There
have been neural networks which employ Laplacian pyra-
mids to capture multi-scale image structures for coarse-
to-fine image generation [7] and super-resolution [14, 32].
Also, Li et al. [15] develop a Laplacian loss for neural style
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transfer to preserve detailed image structures. However, it
is non-trivial to extend Laplacian losses to the SVR frame-
work, where the predicted shape representation must en-
able the Laplacian computation, while providing alignment
to the GT surface. Applying Laplacian losses to surface
meshes, as in Pixel2Mesh [36], is more straightforward,
e.g., by means of minimizing the error between the pre-
dicted Laplacian coordinates before and after mesh defor-
mation. More recently, in ParseNet, Sharma et al. [30] ap-
ply the Laplacian loss on parametric surfaces, aligning the
GT and the predicted surfaces via Hungarian matching. For
implicit methods, existing works such as SoftRas [18] re-
sort to Laplacian regularization to obtain smooth surfaces,
rather than detail recovery. In our work, we define disen-
tangled detail functions as displacement maps, which are
aligned with the input images, making it possible to define
a proper Laplacian loss for SVR with surface details.

3. Method

Given a single RGB image of a 3D object, our goal is
to reconstruct that object with high-quality shape details, in
particular, geometry variations over its surfaces. The input
to our reconstruction network consists of the image as well
as a 3D point; the network outputs the signed distance from
the input point to the target 3D object. Network training is
supervised, taking multi-view projections from 3D objects
in a shape repository to form the ground-truth data pairs.

Our network learns a disentangled signed distance field
(SDF) reconstruction corresponding to the coarse shape and
the shape details, employing a novel Laplacian loss to re-
cover surface details. As shown in Figure 2, our network
starts with an encoder using a CNN architecture to extract
image features and two decoders to predict the coarse shape
and details separately. The coarse shape and details, both in
the form of scalar fields, are then fused together to obtain
the SDF of the reconstructed 3D object. Finally, we apply
Marching Cube [20] to extract the zero level set as the final
reconstructed 3D output mesh model.

The main challenges include how to disentangle (Sec-
tion 3.1) and how to define the Laplacian loss between net-
work predictions and the ground truth (Section 3.3).

3.1. Detail disentanglement formulation

The Laplacian of the SDF of a shape near the shape’s
surface can help detect rapid local geometry variations [8],
i.e., surface details. This motivates the use of Laplacians to
help formulate our detail disentanglement under the implicit
function setup. Specifically, we disentangle the ground-
truth SDF FSDF (i.e., the SDF of the ground-truth shape S)
as the sum of a base implicit field, for a coarse shape, and
the residual field which models displacements, as shown

along the top of Figure 3 and expressed as follows:

FSDF (p) = fB(p) + fD(p),

fB : R3 → R, fD : R3 → R,
(1)

where fB and fD denote the base and displacement fields,
respectively, which are learned. We follow the convention
that capitalization, e.g., F , refers to ground-truth functions,
while learned functions are given in lower-case.

We assume that the coarse shape is smooth and lies
close to the surface S. The smoothness herein implies that
the (residual) displacement field contains information about
surface details. Such information is connected to FSDF

through the Laplacian. Furthermore, near S, the Lapla-
cian of the displacement field fD would closely approx-
imate the Laplacian of FSDF , if the detail displacements
form a height field over a mostly flat surface (on the coarse
shape). The latter implies that 4fB ≈ 0, hence, due to
linearity of the Laplacian operator, we have

4fD(p) = 4FSDF (p), |dist(p, S)| < δ. (2)

With |dist(p, S)| < δ, only the Laplacian of points near S
within a threshold δ need to be sampled during training.

However, for single-view 3D reconstruction, it is diffi-
cult to infer occluded geometry in 3D space. Inspired by
recent works [43, 29] which treat the front and back sur-
faces separately, our network predicts a pair of 2D dis-
placement maps for the visible front surface and the oc-
cluded back surface respectively, instead of a 3D displace-
ment field. The front displacement map recovers details on
the visible front surface, by optimizing the Laplacian near
that surface against the ground-truth. The back displace-
ment map approximates the residual between the SDF and
base distance field to compensate for other details such as
topological structures. Putting things together, we have

FSDF (p) =

{
fB(p) + fDF (u(p)), p ∈ PF ,

fB(p) + fDB(u(p)), otherwise,

4 fDF (u(p)) = 4FSDF (p), p ∈ PF ,

fB : R3 → R, fDF : R2 → R, fDB : R2 → R,

(3)

where fDF and fDB are the displacement maps for the front
and back surfaces. u(p) is the operation to project the 3D
point p to the pixel position on the image. The point set PF

contains the points near the front surface.
The advantages of using 2D displacement maps instead

of 3D fields are two fold. First, it enables us to learn the
small-scale details with contemporary CNN networks. Sec-
ond, it aligns the details with the input images to compute
the Laplacian loss, which we discuss in Section 3.3.

3.2. Network pipeline: encoder, decoder, fusion

Figure 2 shows the pipeline of our network D2IM-Net.
The encoding uses a CNN to extract the global feature vec-
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tor and local feature map from the input image. The base
decoderDecB , an MLP, takes the global feature vector with
a 3D point coordinate as input, and outputs the base value
of this point, i.e., the signed distance from this point to the
coarse shape. The detail decoder DecD contains the resid-
ual convolutional layers with the local feature map as input,
and outputs a front displacement map encoding surface de-
tails on the visible front surface, and a back map to com-
pensate for the topology details on the back surfaces. The
back displacement map is necessary since a pixel outside
the object mask should affect all the points along the ray.

The third stage is to fuse the base distance field with two
displacement maps. Similar to DISN, we train a separate
network to predict the camera parameters to query the dis-
placement values per point on the displacement maps. As in
equation (3), the base distance of a point is summed up with
its corresponding value queried from the front displacement
map, if this point is closer to the visible front surface. Other-
wise, we sum the base distance and the corresponding value
from the back displacement map. In the implementation, we
simply estimate the gradient of the SDF at each point with
central difference approximation. If the gradient direction is
close to the viewpoint direction and the ground-truth SDF
is smaller than a threshold, we classify the point as near
the front surface. Note that we use the ground-truth camera
parameters and the gradients estimated from ground-truth
SDF during training, and the predictions during testing.

3.3. Network losses

Our loss function is formulated asL = LB+Llap+Lsdf ,
where LB , Llap, and Lsdf denote the base loss, Laplacian
loss, and SDF loss, respectively. Specifically, LB is the L2-
distance between the predicted base distance field fB and
the ground-truth SDF FSDF over a set of sample points to
learn the coarse shape. The SDF loss term Lsdf is the L1-
distance between the fused implicit field f and the ground-
truth SDF FSDF ; this term serves as a regularization for the
displacement maps. Thus we have,

LB =
1

M

M∑

i=1

‖fB(pi)− FSDF (pi)‖22

Lsdf =
1

M

M∑

i=1

|f(pi)− FSDF (pi)|
(4)

The Laplacian loss, Llap, aims to minimize the error be-
tween the Laplacian of the predicted (front) displacements
and the Laplacian of the ground-truth SDF. However, there
exists a mismatch between the two Laplacians since our
disentangled details are displacement maps defined in 2D
while the ground-truth SDFs are defined in 3D.

To solve this problem, we estimate the 2D projection
of the ground-truth Laplacian, i.e., the Laplacian of the

ground-truth SDF with respect to pixel positions on the im-
age. This is reasonable since the single-view images are not
sensitive to variations along the viewing direction. In ad-
dition, this enables us to obtain the ground-truth Laplacian
from 2D normal maps, instead of computing it in 3D.

To project a point p in 3D space, we first transform it
to p′ = (p′x, p

′
y, p

′
z) in the camera’s viewpoint, and then

project it to the pixel position u(p) = (ux, uy). The Lapla-
cian of the front displacement map is

4 fDF (u(p)) =
∂2fDF (u(p))

∂(ux)2
+
∂2fDF (u(p))

∂(uy)2
. (5)

If p lies on the visible front surface, the ground-truth normal
map provides its unit normal vector N(u(p)) = ∂FSDF (p)

∂p′ ,
which equals to the gradient of the SDF with respect to the
point coordinates p′ in the camera view. With the camera
parameters in the projecting operation, we obtain the gradi-
ent of the coordinates p′ with respect to the pixel position
u(p), denoted by ∂p′

∂u(p) . Therefore, we have the projected
gradient of the SDF with respect to u(p) as

N ′(u(p)) = (N(u(p)) · ∂p
′

∂ux
, N(u(p)) · ∂p

′

∂uy
), (6)

and the projected Laplacian (the ground-truth Laplacian) is

l(u(p)) = N(u(p)) · ∂p
′

∂2ux
+N(u(p)) · ∂p

′

∂2uy
. (7)

Hence, the Laplacian loss is defined as

Llap =
1

|PF |
∑

pi∈PF

‖4fDF (u(pi))− l(u(pi))‖22 . (8)

Weighted sampling. The loss terms are all defined on a
set of sampled points. Unlike previous works, e.g., [5, 41],
which randomly sample near object surfaces, we emphasize
the importance of small-scale (e.g., thin) structures. Assum-
ing a dense set of point-value pairs for an object, we define
the density at each point as the number of points in its neigh-
borhood with a prescribed radius. The interior points only
count their neighbor points inside the object, so do the exte-
rior points. During training, we sample an equal number of
interior and exterior points with their densities as sampling
weights. Such a weighted sampling strategy enables us to
have more interior point-value pairs for the thin structures
to better recover them during reconstruction.

4. Results, evaluation, and application
All the reconstruction networks are trained (over all cat-

egories) and tested on the ShapeNet Core dataset [3]. The
training set comes from the ground-truth SDFs provided by
DISN [41] and their rendered images including single-view
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CD IoU ECD-3D ECD-2D
Baseline 0.0417 0.523 0.0735 3.304
WSamp 0.0340 0.587 0.0624 2.626
NoBack 0.0306 0.589 0.0525 1.802
NoLap 0.0302 0.601 0.0524 1.653
Full 0.0297 0.613 0.0503 1.456

Table 1. Quantitative evaluation for ablation study.

images and 2D normal maps. The ground-truth SDFs were
randomly sampled on 32,768 points near the object surfaces
with their signed distance values. In each iteration during
training, we randomly select 2,048 points with our weighted
sampling strategy to compute the loss and update the net-
work. For the input images, we use all the views during
training but use the one showing most of the details during
testing to better evaluate the shape details.

4.1. Evaluation metrics

For all the implicit 3D reconstructions we test, the final
meshes are extracted via MarchingCubes in 1283 resolu-
tion. To measure the overall reconstruction quality, we use
Chamfer L1 Distance (CD) [21] with 20K sampled points
and Intersection of Union (IoU) in 323 resolution. It is
worth noting however that despite their popularity, CD and
IoU are not the best measures of visual reconstruction qual-
ity [13]. Also, they do not emphasize on small-scale details.

Since the focus of our work is on detail recovery, we em-
ploy the Edge Chamfer Distance (ECD) [4], which is de-
fined as the CD between the edge points on the ground-
truth shapes and the reconstructions. The “edgeness” of
each point pi is estimated as σ(pi) = minpj∈Ni

|ni · nj |,
where Ni contains neighbors of point pi, ni and nj are the
unit normal vectors for points pi and pj . From 20K sam-
pled points, we retrieve the nearest 10 neighbors for each
point and retain the points with σ(pi) < 0.8 to measure the
small-scale details. Similarly, we develop a 2D version of
the ECD metric, since we recover details observed from im-
ages. ECD-2D is defined as the CD between the edge pixels
on the corresponding renderings. We apply the Canny edge
detector [2] on the rendered 224 × 224 normal map of the
reconstructed objects to obtain the edge pixels. The orig-
inal ECD and its 2D version are denoted as ECD-3D and
ECD-2D in our quantitative evaluation.

4.2. Ablation study

We conduct an ablation study to show how each compo-
nent of D2IM-Net contributes to detailed single-view 3D re-
construction. For the study, the networks are trained on the
chair category from ShapeNet with the ground-truth camera
parameters assumed given. The network options are:

Figure 5. Qualitative results for ablation study: reconstructed ob-
jects rendered with the same camera parameters as input images.

• Baseline: no detail decoder from D2IM-Net and
trained with uniform sampling and with loss Lsdf de-
fined on the output of the base decoder.

• WSamp: weighted sampling to train the baseline.

• NoBack: no back displacement map prediction from
D2IM-Net; the predicted base distance field is fused
with only the front displacement map.

• NoLap: only removing Llap loss from D2IM-Net; both
NoBack and NoLap use weighted sampling.

• Full: all-component D2IM-Net as describe in Figure 2.

Figure 5 and Table 1 provide qualitative and quantitative
comparison results, respectively. As we can see, weighted
sampling helps reconstruct thin volumes, with the detail de-
coder providing even more improved results on topological
structures, while surface details are best recovered with the
Laplacian loss (see NoLap vs. Full or NoBack).

4.3. Comparison

In our comparison to the state of the art, we focus on
implicit models which have yielded the best reconstruction
quality so far. In addition to IMNET [5], which is a baseline
corresponding to the base decoder branch of D2IM-Net, we
focus on comparing to DISN [41], which is, to the best of
our knowledge, the top single-view reconstruction network
to date in terms of detail recovery. We also test a slight
variant to D2IM-Net, called D2IM-NetGL, which takes both
global and local features as input to its base decoder.

As shown in Figure 6, IMNET generally obtains good
coarse reconstruction, but misses most details. DISN does
a better job in terms of recovering topological structures
and shape boundaries, but typically blurs surface features.
Both versions of D2IM-Net visually outperform IMNET
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Figure 6. Qualitative comparison between reconstruction results by IMNET [5], DISN [41], D2IM-Net, and D2IM-NetGL.

plane bench box car chair display lamp speaker rifle sofa table phone boat Mean
IoU ↑ IMNET 0.5200 0.5133 0.4581 0.7653 0.5411 0.5185 0.4168 0.5194 0.5643 0.6386 0.5083 0.6701 0.5631 0.5536

DISN 0.5362 0.5403 0.4615 0.8105 0.5539 0.4879 0.3791 0.4958 0.7237 0.6520 0.5629 0.7071 0.6566 0.5821
D2IM-Net 0.5584 0.5495 0.4860 0.7980 0.5613 0.5272 0.4213 0.5175 0.6813 0.6535 0.5367 0.7616 0.6339 0.5912
D2IM-NetGL 0.5553 0.5425 0.4760 0.8114 0.5441 0.5112 0.4495 0.5031 0.6626 0.6437 0.5475 0.6966 0.6381 0.5832

CD ↓ IMNET 0.0426 0.0382 0.0503 0.0437 0.0376 0.0479 0.0557 0.0632 0.0329 0.0475 0.0432 0.0317 0.0443 0.0445
DISN 0.0398 0.0351 0.0412 0.0308 0.0326 0.0462 0.0770 0.0647 0.0199 0.0366 0.0316 0.0282 0.0312 0.0396
D2IM-Net 0.0358 0.0312 0.0385 0.0348 0.0329 0.0422 0.0557 0.0561 0.0244 0.0391 0.0356 0.0245 0.0339 0.0373
D2IM-NetGL 0.0358 0.0337 0.0386 0.0313 0.0308 0.0427 0.0549 0.0572 0.0242 0.0375 0.0310 0.0270 0.0339 0.0368

ECD-3D ↓ IMNET 0.0789 0.0685 0.0872 0.0872 0.0661 0.0820 0.0995 0.1080 0.0674 0.0790 0.0710 0.0724 0.0823 0.0807
DISN 0.0684 0.0573 0.0697 0.0680 0.0564 0.0765 0.1127 0.1077 0.0350 0.0606 0.0601 0.0708 0.0583 0.0694
D2IM-Net 0.0567 0.0477 0.0661 0.0728 0.0523 0.0674 0.0918 0.0909 0.0343 0.0642 0.0630 0.0609 0.0568 0.0634
D2IM-NetGL 0.0598 0.0516 0.0691 0.0646 0.0504 0.0713 0.0897 0.0973 0.0357 0.0602 0.0567 0.0660 0.0534 0.0635

ECD-2D ↓ IMNET 2.532 2.845 4.467 3.344 2.703 3.230 3.361 4.198 3.138 2.979 2.846 2.422 3.046 3.162
DISN 2.672 2.209 2.250 2.042 1.983 3.156 4.863 3.338 1.353 2.062 2.065 2.259 2.003 2.481
D2IM-Net 1.991 1.666 1.794 2.072 1.707 1.954 3.157 2.636 1.277 2.014 1.880 1.617 1.730 1.961
D2IM-NetGL 1.982 1.774 1.739 1.767 1.584 2.675 3.009 2.715 1.766 1.776 1.737 2.142 2.269 2.072

Table 2. Quantitative comparison results: IoU at 323 resolution; CD and ECD-3D on 20K sample points; ECD-2D on 224× 224 rendered
normal maps. Top numbers are in bold and second place is indicated in italic.

and DISN, especially over small-scale, high-frequency de-
tails. This is consistent with the quantitative results, pro-
vided by ECD-3D and ECD-2D measures, as shown in Ta-
ble 2. Overall, Table 2 shows that both versions of D2IM-
Net also outperform IMNET and DISN quantitatively, in
terms of both overall reconstruction quality (CD and IoU)
and edge feature recovery (ECD-3D and ECD-2D).

Comparing between D2IM-Net and D2IM-NetGL, we
generally find D2IM-Net to slightly outperform the latter
in visual quality (see Figure 6), especially in terms of sur-
face details, which may be due to the redundancy in using
latent (local) features in both the base and detail decoders
by D2IM-NetGL. D2IM-NetGL appears to perform better
on thin structures. Results from Figure 7 support these find-

ings, where we show single-view 3D reconstruction from
several online images, with no 3D ground-truth shapes.

4.4. Application: detail transfer and reconstruction

With disentangled coarse shapes and details in the con-
text of 3D reconstruction, enabled by our work, it becomes
possible to transfer geometric details or features from im-
ages to images and then obtain a final 3D outcome.

Detail transfer. Given a pair of single-view images of
different objects (e.g., two chairs), our network predicts
their disentangled coarse shapes and details, respectively.
Detail transfer involves fusing the disentangled source de-
tails with the target coarse shape. In the fusion stage, for

7



Figure 7. Reconstruction results from single-view images “in the wild” using D2IM-Net (left) and D2IM-NetGL (right).

Figure 8. When a logo image, e.g., of “D2IM”, is “drag-n-
dropped” onto a chair image, we obtain a reconstructed 3D chair
model (shown in a view that is different from that of the input
image) with surface features resembling the input logo.

each point p, we sum up its base distance fB(p) from the
target image and the queried source detail displacement
fDF (uS(q)) or fDB(uS(q)) with a learned 3D correspon-
dence q = CT→S(p), where uS is the projection operation
with camera parameters predicted from the source image.

Our method allows such a detail transfer for a specified
semantic part, by fusing the displacement values from the
source image for the points near this part, and displacement
values from the target image otherwise. Results in Figure
1 show surface detail transfer from the source chair images
(top row) to the target chair images (left column) on the
chairs’ backs while preserving the coarse shapes.

In the implementation, we use a pre-trained semantic
segmentation network [37] on the two coarse shapes to build
the correspondence q = CT→S(p). The corresponding seg-
mented parts imply a point-wise correspondence within the
local volumes. Specifically, for each point p, we compute
its local coordinates with respect to the frame defined by the
target part it belongs to, and then map it back to the world
coordinates q based on the frame of the source part. The
local frames are origined at the center of the axis-aligned
bounding boxes of each part with fixed axes directions.

“Paste-n-reconstruct”. Under the same spirit of image-
to-image detail transfer but in a slightly different task set-
ting, Figure 8 shows how a small image logo can be drag-
n-dropped onto another image, where the logo content is
pasted onto the target image and then a 3D shape can be
reconstructed with the pasted logo features.

To implement this, the target image (the chair in Fig-
ure 8) goes through the D2IM-Net encoder and base decoder
to provide the base distance field for the coarse shape. On
the other hand, both the target image and the (source) logo

image go through the same encoder and detail decoder to
predict their displacement maps. With the separately pre-
dicted (or pre-defined) camera parameters for each image,
we fuse the base distance field and all the displacement
maps (only front displacement maps of the logo images)
by the projection with their camera parameters. When the
foreground masks of the logo images are given, we can crop
the foreground displacements for a better visualization.

5. Conclusion, limitation, and future work

We tackle perhaps the “last mile” in single-view 3D re-
construction, i.e., to recover small-scale geometric details,
especially surface features. This is a deceptively difficult
problem as we seek a network that generalizes to shapes
across multiple categories (13 categories in ShapeNet in our
experiments), not a method that “overfits” to specific in-
puts. Note also that we do not rely on symmetry priors or
color/material cues. Our key idea is to learn a detail dis-
entangled representation with a dedicated loss for surface
details, defined in the Laplacian domain.

One main limitation of our current method is the assump-
tion that the surface details are defined by a height field over
a mostly flat surface. One implication of this is that geomet-
ric details corresponding to “overhangs” are precluded. An-
other implication is that, technically, our network would be
unable to recover surface details over surfaces that are suffi-
ciently curved. In practice, we have found that our network
is able to recover surface details over mildly curved sur-
faces, as the example at the bottom-left of Figure 7 demon-
strates. A second limitation is that our Laplacian loss is de-
fined only on the front surface of the recovered shape. Fur-
thermore, even on the front, we can notice that the recon-
structions obtained often look slightly worse when viewed
from an different angle as in the input image. Possible
remedies to this include more accurate view parameter in-
ference and consideration of symmetry priors [43].

In addition to addressing the above limitations, we are
also interested in expanding the use of neural Laplacian do-
main processing to other shape representations such as vox-
els, point clouds, and meshes, as well as exploring disen-
tangled learning of geometric details for a variety of other
applications including multi-modal detail transfer, 3D su-
perresolution, and generative shape modeling.
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D2IM-Net: Learning Detail Disentangled Implicit Fields from Single Images

Manyi Li Hao Zhang
Simon Fraser University

1. Implementation
In the implementation of D2IM-Net, we take ResNet18

as our encoder to obtain the global feature and local feature
map from the input image. The base decoder is an MLP
with the architecture of IMNET [1]. The detail decoder
follows the network in [4] to predict the two displacement
maps from the local feature map. As for D2IM-NetGL, we
take DISN [3] as the base decoder with both their global
decoder and local decoder.

In the Laplacian computation, in order to balance the
three loss terms, we scale the predicted and ground-truth
derivitaves by the same factor with respect to ∂u(p)

∂p′ . There-
fore, the Laplacian loss becomes (see Section 3.3 in the
main paper for the denotations)

Llap =
1

|PF |
∑

pi∈PF

‖4f ′
DF (u(pi))− l′(u(pi))‖22

l′(u(p)) =
N(u(p))

∂ux
+

N(u(p))

∂uy

4 f ′
DF (u(p)) =

fDF (u(p))

∂2ux
· ∂ux

∂p′x
+

fDF (u(p))

∂2uy
· ∂uy

∂p′y
.

(1)

2. Detail transfer results
We present more results of detail transfer between two

images. The details on the chairs’ backs are transferred
from the source images to the target images. Both the
source images and target images are from the test set.

For the target images, we show the reconstructions and
their part segmentation (axis-aligned bounding box per part)
[2] in Figure 1, the detail transfer results in Figure 2. As
described in Section 4.4 of our paper, the semantic segmen-
tation of the reconstructed coarse shapes are used to pro-
vide the 3D correspondence for the transfer. Note that one
can also interactively tune the bounding boxes to refine the
transferred details.

3. Single-view reconstruction results
Figure 3, 4, 5, 6, 7 show more qualitative results of

single-view reconstruction. We mainly show the recon-
structions of categories with clear details, such as chairs,

Figure 1. The reconstructions (middle row) and part segmentation
(bottom row) of the input images (top row). The images are used
as the target images in Figure 2.

sofas, cabinets, speakers. The results of D2IM-Net recover
the details while preserving the flatness of the other regions,
which is preferred in the reconstruction scenarios.
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Figure 2. More results of detail transfer between semantic parts (chairs’ backs). Top row: source image to provide details; Left column:
target image to provide coarse shapes. Two views of each transferred reconstruction are shown.

Figure 3. More qualitative results. Two views of D2IM-Net and D2IM-NetGL are presented to show the reconstruction and recovered
details.
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Figure 4. More qualitative results. Two views of D2IM-Net and D2IM-NetGL are presented to show the reconstruction and recovered
details.
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Figure 5. More qualitative results. Two views of D2IM-Net and D2IM-NetGL are presented to show the reconstruction and recovered
details.
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Figure 6. More qualitative results. Two views of D2IM-Net and D2IM-NetGL are presented to show the reconstruction and recovered
details.
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Figure 7. More qualitative results. Two views of D2IM-Net and D2IM-NetGL are presented to show the reconstruction and recovered
details.
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